

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T580 **(E)**(A4)T

NATIONAL CERTIFICATE

ELECTRO-TECHNOLOGY N3

(11040343)

4 April 2017 (X-Paper) 09:00–12:00

This question paper consists of 6 pages and a formula sheet of 3 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ELECTRO-TECHNOLOGY N3 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Sketches and diagrams must be done in pencil. The sketches/diagrams must be neat, reasonably large and fully labelled.
- 5. The answers must be worked to THREE decimal places after a comma.
- 6. Use the correct units for answers.
- 7. Write neatly and legibly.

(11040343)

(5)

QUESTION 1

- 1.1 Give a suitable name for the drawing in FIG.1 (1)
- 1.2 Name the parts indicated by the arrows in FIG.1. Write only the answer next to the question number (1.2.1 - 1.2.5) in the ANSWER BOOK.

QUESTION 2

2.1	Briefly define residual magnetism as applicable to a DC machine.	(2)
2.2	The current through the field coils is determined by the supply voltage and the field resistance.	
	Express this information in terms of a formula.	(2)
2.3	Name FOUR uses of a cumulatively compounded motor.	(4)
2.4	Name TWO safety devices which are found in a series starter motor.	(2) [10]

3.1

State TWO applications of a differentially compounded generator.

(2)

QUESTION 3

3.2	State ON	E purpose of a shunt-excited motor.	(1)
3.3	A 240 V, 0,2 Ω and	9,6 kW shunt-wound generator has an armature circuit resistance of I shunt field of 80 $\Omega.$	
	Determine	e the following:	
	3.3.1	The shunt field current	(1)
	3.3.2	The line current	(1)
	3.3.3	The armature current	(2)
	3.3.4	The generated EMF at full load	(3) [10]
QUEST	ION 4		[]
4.1	Draw nea direction direction of	at, labelled schematic diagrams to show (two methods) how the of the following DC motors can be reversed. Also indicate the of the armature and field currents in the diagrams	
	4.1.1	Compound motor	(5)
	4.1.2	Shunt motor	(5) [10]
QUEST	ION 5		
5.1	An 0,06 M	W electric motor draws a current of 175A from a 380V supply.	
	Determine	e the following:	
	5.1.1	The output power	(1)
	5.1.2	The input power	(2)
	5.1.3	The efficiency of the motor	(3)
5.2	State FOUR main ohmic losses in the current-carrying components of a DC machine		
			[10]

QUESTION 6

- 6.1 A lamp's rating is 160 V, 200 W, coupled to be used on a 230 V, 50 Hz supply. The capacitance must be connected in series with the lamp in order to operate properly.
 - (HINT: Treat the lamp as purely resistive.)

Determine the following:

6.1.1	Total circuit current	(2)
6.1.2	Total voltage	(3)
6.1.3	Capacitive reactance	(2)
6.1.4	Capacitive value	(3) [10]

QUESTION 7

7.1 A 200 kW, three-phase AC motor, is connected in delta and the supply voltage is 440V. The power factor is 0, 94.

Determine the following:

7.1.1	The line voltage	(1)
7.1.2	The line current of the motor in kA	(3)
7.1.3	The phase current of the motor in mA	(3)
State	THREE disadvantages of low power factor.	(3) [10]

QUESTION 8

7.2

8.1 A three-phase transformer has a primary star connection and secondary delta connection. The input line voltage is 190V, and the output line voltage is 3 300V.

Determine the following:

State TW	O purposes of an oil-immersed transformer.	(2) [10]
8.1.3	The secondary line current when the primary line current is 600A.	(3)
8.1.2	The transformer-ratio	(3)
8.1.1	The primary phase voltage	(2)

8.2

(3) [**10**]

QUESTION 9

9.1 A galvanometer has a resistance of 100Ω , and gives full-scale deflection when 3 mA passes through it.

Calculate the size of an ammeter to measure up to 1A. (3)

- 9.2 Briefly describe mutual induction as applicable in a transformer without supporting your description with a sketch. (4)
- 9.3 State THREE advantages of *damping mechanism*.

QUESTION 10

10.1	Briefly explain the term <i>positive voltage level</i> and support your answer by means of a suitable sketch.	(3)
10.2	State ONE function of each of the following components:	
	10.2.1 Transistor	(1)
	10.2.2 Diode	(1)
	10.2.3 Silicon control rectifier	(1)
10.3	Draw a switching circuit for a NAND gate. The circuit must include a lamp, battery and switches.	(4) [10]
	TOTAL:	100

ELECTRO-TECHNOLOGY N3

FORMULA SHEET

Any applicable formula may also be used

- 1. $E = V - I_a R_a$ 2. $E = V + I_a R_a$ 3. $E = 2p\Phi \frac{ZN}{60c}$ 4. N = $\frac{V}{K\Phi}$ 5. $T = \frac{0.318I_a Z p \Phi}{C}$ $\frac{VI}{VI + I_a^2 R_a + I_s V + C}$ ×100% 6. Efficiency/Rendement = Efficiency/Rendement = $\frac{VI - (I_a^2 R_a + I_s V + C)}{VI} \times 100\%$ 7. Efficiency/Rendement = $\frac{2\pi N(W-S)r}{60VI} \times 100\%$ 8. Efficiency/Rendement = $\sqrt{\frac{I_1}{I_1 + I_2}} \times 100\%$ 9. 10. E = Blv11. $e = E_m Sin2uft$ 12. i= I "Sin2цft 13. $e_{ave/gem}$ or/of $i_{ave/gem} = 0,637 E_m$ or/of I_m
- 14. $e_{rms/wgk}$ or/of $i_{rms/wgk} = 0,707 E_m$ or/of I_m

(11040343)

15.
$$E_{ave/gem} = \frac{e_1 + e_2 + e_3 + e_4 + ... + e_n}{n}$$

Or/of $I_{ave/gem} = \frac{i_1 + i_2 + i_3 + ... + i_n}{n}$
16. $E_{rans/wgk} = \sqrt{\frac{e_1^2 + e_2^2 + e_3^2 + ... + e_n^2}{n}}$
Or/of $I_{rans/wgk} = \sqrt{\frac{i_1^2 + i_2^2 + i_3^2 + ... + i_n^2}{n}}$
17. Form factor/Vormfaktor $= \frac{E_{rans/wgk}}{E_{ave/gem}}$ or/of $\frac{I_{rans/wgk}}{I_{AVE/OEM}}$
18. Crest factor/Kruinfaktor $= \frac{E_{m}}{E_{rans/wgk}}$ or/of $\frac{I_n}{I_{rans/wgk}}$
19. $I = \frac{V}{R}$
20. $X_L = 2ufL; \quad i = \frac{V}{X_L}$
21. $X_C = 2ufC; \quad i = \frac{V}{X_C}$
22. $Z = \sqrt{R^2 + X_L^2}; \quad Z = \sqrt{R^2 + X_C^2}; \quad I = \frac{V}{Z}$
23. $Tan \ \theta = \frac{X_L}{R}; \ Tan \ \theta = \frac{X_C}{R}$
24. $V_R = I \times R; \quad V_L = I \times X_L; \ V_C = I \times X_C$
25. $Z = \sqrt{R^2 + (X_L - X_C)^2}; \quad Z = \sqrt{R^2 + (X_C - X_L)^2}$
26. $Tan \ \theta = \frac{X_L - X_C}{R}; \ Tan \ \theta = \frac{X_C - X_L}{R}$

Copyright reserved

(11040343)

29.
$$\cos \theta = \frac{R}{Z}$$
; $\cos \theta = \frac{Wor/gkW}{VAor/gkVA}$
30. $I_{active/abdef} = ICos\theta$; $I_{reactive/reabdef} = ISin\theta$
31. $P = VI \cos \theta$
 $Q = VI \sin \theta$
32. $f_r = \frac{1}{2\pi\sqrt{LC}}$
33. $I = \sqrt{I_R^2 + I_r^2}$; $Tan \theta = \frac{I_L}{I_R}$
34. $I = \sqrt{I_R^2 + I_r^2}$; $Tan \theta = \frac{I_c}{I_R}$
35. $I = \sqrt{I_R^2 + (I_L - I_C)^2}$; $Tan \theta = \frac{I_c - I_L}{I_R}$
36. $I = \sqrt{I_R^2 + (I_C - I_L)^2}$; $Tan \theta = \frac{I_c - I_L}{I_R}$
37. $\cos \theta = \frac{I_R}{I}$
38. $V_L = V_p$; $I_R = \sqrt{3}I_p$
39. $V_L = \sqrt{3}V_p$; $I_L = I_R$
40. $W = \sqrt{3}V_LI_L \cos\theta \times \eta$
41. $\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$
42. $kVA = \frac{\sqrt{3}V_LI_L}{1000}$
43. $V_{shower glawt} = V_{meer}$; $I_s R_s = I_m R_m$
44. $I_T = I_m + I_s$

Copyright reserved